
www.elsevier.com/locate/patrec

Pattern Recognition Letters 27 (2006) 1744–1754
A straight line detection using principal component analysis

Yun-Seok Lee, Han-Suh Koo, Chang-Sung Jeong *

Department of Electronics Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, Republic of Korea

Received 16 August 2005; received in revised form 30 March 2006
Available online 22 June 2006

Communicated by G. Sanniti di Baja
Abstract

A straight line detection algorithm is presented. The algorithm separates row and column edges from edge image using their primitive
shapes. The edges are labeled, and the principal component analysis (PCA) is performed for each labeled edges. With the principal com-
ponents, the algorithm detects straight lines and their orientations, which is useful for various intensive applications. Our algorithm over-
comes the disadvantages of Hough transform (HT) and other algorithms, i.e. unknown grouping of collinear lines, complexity and local
ambiguities. The experimental results show the efficiency of our algorithm.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Straight line detection; Principal component analysis (PCA); Line descriptor; Edge image
1. Introduction

Straight line detection is a fundamental field in com-
puter vision, e.g. vanishing point detection, parallel line
detection and line matching across views (Lutton et al.,
1994; Schmid and Zisserman, 1997). A few models have
been proposed in literature; among them, Hough trans-
form (HT) is the most well-known algorithm (Hough,
1962; Duda and Hart, 1972). In HT, each edge pixel is
voted upon a quantized parameter space. Each cell in the
accumulator array for the quantized parameter space cor-
responds to a straight line. Modified versions of HT have
been proposed such as fast HT (Li et al., 1986), adaptive
HT (Illingworth and Kittler, 1987), combinatorial HT
(Ben-Tzvi and Sandler, 1990) and hierarchical HT (Princen
et al., 1990). However, regardless of its robustness, the
actual distribution of edges is not known, because HT is
a mandatory grouping method for collinear lines.
0167-8655/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.patrec.2006.04.016

* Corresponding author. Tel.: +82 2 929 0985; fax: +82 2 926 7620.
E-mail addresses: leeys@snoopy.korea.ac.kr (Y.-S. Lee), hskoo@kor-

ea.ac.kr (H.-S. Koo), csjeong@charlie.korea.ac.kr (C.-S. Jeong).
In the method presented by Nevatia and Babu (1980),
edge pixels are extracted using six 5 · 5 gradient masks
for threshold detection and thinning. Edge pixels are
linked to other pixels which are identified as the same lin-
ear segment. The contours are approximated by relative
straight line pieces using an iterative end-point fitting
method.

In (Burns and Hanson, 1986), pixels are grouped into
line-support regions of similar gradient orientation. The
intensity surface associated with each line-support region
is approximated by a planar surface. Straight lines are
extracted by intersecting this fitted plane with a horizontal
plane representing the average intensity of the region
weighted by a local gradient magnitude. Although long
lines can be extracted, the method is rather complex.

In (Venkateswar and Chellapa, 1992), a straight line
extractor for aerial images is proposed. The extractor first
scans the edge image to generate a label image using vari-
ous templates for edge direction. Next, the extractor
assigns the same label to the edge pixels in the same line.
Then, the lines are merged, if they are identified as a collin-
ear line. The disadvantage of this method, however, is that
it has to consider a large number of templates.

mailto:leeys@snoopy.korea.ac.kr
mailto:hskoo@korea.ac.kr
mailto:hskoo@korea.ac.kr
mailto:csjeong@charlie.korea.ac.kr

Algorithm 1: Row and column edge extraction (p[i][j]:
pixel at (i, j))

for all i and j

if both p[i][j] and p[i][j + 1] are edge pixels
register p[i][j] and p[i][j + 1] as row mark

end if
if both p[i][j] and p[i � 1][j] are edge pixels

add column mark to the register of p[i][j] and
of p[i � 1][j]

else if p[i][j] is an edge but it has no mark in the
register

register p[i][j] as single mark
end if

end for

Y.-S. Lee et al. / Pattern Recognition Letters 27 (2006) 1744–1754 1745
Recently, Guru et al. (2004) proposed a line detection
algorithm based on small eigenvalue. The small eigenvalue
of the covariance matrix of the edge pixels covered by a
mask of a proper size is estimated. The mask is moved pixel
by pixel, so that each edge pixel has a number of eigen-
values because of the overlapping of masks. Consequently,
each edge pixel is associated with the minimum eigenvalue
of all the small eigenvalues that are assigned to it; and if the
minimum eigenvalue is less than a pre-defined threshold
value, the pixel is said to be linear edge pixel. However,
the performance can be damaged by either unsuitable size
of mask or excessive noise pixels in the edge image. More
recently, they presented papers for the algorithm using
principal component analysis (PCA) (Nagabhushan et al.,
2005; Shekar et al., 2006). Especially, they proposed an
algorithm for edge detection using eigenvalue (Nagabhu-
shan et al., 2005), so they can have straightforward proce-
dure for line detection using PCA because the line detection
needs an edge image for the first time. Besides, in their
paper for object recognition (Shekar et al., 2006), they used
their line detection method as preprocessing, and again
they used PCA to obtain principal component vectors of
objects. In this way, they have proposed various applica-
tions for PCA from edge detection to object recognition.

In this paper, we describe an efficient algorithm for
straight line detection. As discussed in the following sec-
tion, the algorithm extracts straight lines from edge image
using PCA. First, we divide edge segments into row- and
column-directional edge pieces to label them separatively.
Second, we analyze each labeled line to obtain its principal
direction and straightness. Straight lines are then detected,
if the small eigenvalue of line is less than a pre-defined
value, which may be changed relative to the length of the
line. Section 3 will discuss the threshold for determining
straightness of lines. In Section 4, experimental results will
be shown. The discussion and conclusion will be addressed
in Section 5.

1.1. Terminology

We discriminate ‘‘straight line’’ from line. We also use
‘‘primitive’’ as a basic segment of a line which is like a
bar. Therefore, ‘‘row edge’’ consists of row primitives
and ‘‘column edge’’ consists of column primitives. The edge
pixel that has no neighbor in four directions is called ‘‘sin-
gle’’ primitive, and the pixel that can be an element of both
row and column primitives is called ‘‘cross’’ primitive (see
Fig. 3(b)).
Fig. 1. The overall diagra
2. Proposed algorithm

Edge images have various line segments such as curve,
circle and straight line. In digital coordinates, however,
there exist only two types of straight lines, i.e. row-direc-
tional line and column-directional line. The combination
of those lines makes a curve roughly. Thus, we can say that
all edge segments are basically straight lines in a digital
scheme, but the segments of a line gradually change the ori-
entation of the line to make an arbitrary shape. The pur-
pose of our algorithm is to find the lines that have small
variation of the orientation. The overall diagram of our
algorithm is shown in Fig. 1.

2.1. Edge separation and labeling

We first extract row and column edges from the edge
image detected by Canny edge detector (Canny, 1986),
and the detected edges are labeled for the next step. The
following Algorithm 1 shows the procedure for the extrac-
tion of row and column edges.
Some edge pixels are marked as both row and column
edges, if they are center pixels of cross lines. Therefore,
after above processing, there are four types of marks, i.e.
row, column, row and column (or cross), and single. Next,
row and column edge segments are labeled separately using
edge connectivity.

Since the segments of a straight line run along the same
direction, we separately label row and column edges using
m of our algorithm.

1746 Y.-S. Lee et al. / Pattern Recognition Letters 27 (2006) 1744–1754
8-neighbor connectivity to extract the primitive type of a
straight line. First, the label register for the row has the
labels of all the edges except for the column marked edges.
In a similar way, the label register for the column has the
labels except for the row marked edges. If a label consists
of only single edges, it should remain only in one of the reg-
isters to avoid redundant processing. Thus, the column reg-
ister is used for the label consisting of only single edges.
The labeling algorithm is shown in Fig. 2 and the example
of the algorithm is shown in Fig. 3.

2.2. Straight line detection using PCA

PCA is a well-known metric method that produces the
base axes of a distribution of data (Duda et al., 2001).
Given an ideal straight line in two dimension, it has some
principal components deduced from the eigenvectors and
Fig. 2. The edge labeling algorithm.

Fig. 3. Example of edge labeling: (a) edge image, (b) blue, red, green, and bla
image except column marked edges, (d) is the edge image except row marked ed
single primitives remain in column edge image, (f) while row edge image and (e)
figure legend, the reader is referred to the web version of this article.)
eigenvalues of the scatter matrix. The eigenvector means
one main direction of the distribution of the pixels of a line
and the eigenvalue means how long the distribution is.
Generally, the first eigenvalue is larger than the second
one, so that, in the case of ideal straight line, the second
eigenvalue should be zero. However, a digital line is repre-
sented stepwise, so that the second eigenvalue of the line
cannot be zero. The tolerance for that case will be
addressed and determined in the next section. The scatter
matrix is as follows:

S ¼
s11 s12

s21 s22

� �
: ð1Þ

If n is the number of pixels in a line and (xi,yi) is the coor-
dinates of the ith pixel of the line,

s11 ¼
1

n

X
i¼1;...;n

ðxi � xmÞ2; ð2Þ

s12 ¼ s21 ¼
1

n

X
i¼1;...;n

ðxi � xmÞðyi � ymÞ; ð3Þ

s22 ¼
1

n

X
i¼1;...;n

ðyi � ymÞ
2
; ð4Þ

where

xm ¼
1

n

X
i¼1;...;n

xi; ym ¼
1

n

X
i¼1;...;n

yi: ð5Þ

The large eigenvalue k1 and the small eigenvalue k2 of the
scatter matrix are
ck is column, row, single, and cross primitive respectively, (c) is the edge
ges. After eliminating gray points in (c) and (d), the edges consisting of only

does not have such edges. (For interpretation of references in color in this

Y.-S. Lee et al. / Pattern Recognition Letters 27 (2006) 1744–1754 1747
k1 ¼
1

2
s11 þ s22 þ

ffi
ðs11 � s22Þ2 þ 4s2

12

q� �
; ð6Þ

k2 ¼
1

2
s11 þ s22 �

ffi
ðs11 � s22Þ2 þ 4s2

12

q� �
: ð7Þ

We can only know the proportion of the elements of the
eigenvector, and so the angle of the line, h is defined as

h ¼ tan�1 ðk1 � s11Þ
s12

or h ¼ tan�1 s21

ðk1 � s22Þ
: ð8Þ

Above two equations are identical because det(k1I �
S) = 0. In this way, the straightness of a line and its angle
are obtained. Thus, the position and orientation of a line is
easily taken from the eigenvector of the scatter matrix as it
is obtained from HT. However, HT gives the information
for a group of the lines in the same orientation, while
PCA gives such information for a separate line.
Fig. 4. (a) Short straight lines of the range from p/4 to p/2 in 16 parts and
(b) noise lines which are likely to be straight lines.

Table 1
Angles and small eigenvalues of 16 short lines in Fig. 4(a)

Type 1 2 3 4

Angle 1.5708 1.5207 1.4496 1.37
Eigenvalue 0.0 0.0621 0.0728 0.07

9 10 11 12

Angle 1.1055 1.0446 0.9918 0.94
Eigenvalue 0.0498 0.0583 0.0610 0.05

Table 2
Angles and small eigenvalues of 16 noise lines in Fig. 4(b)

Type 1 2 3 4

Angle 1.5708 1.5708 1.5708 1.55
Eigenvalue 0.5956 1.5822 7.1556 0.12

9 10 11 12

Angle 1.5708 1.5708 1.4710 1.57
Eigenvalue 0.1956 0.2933 0.2159 0.66
2.3. Time complexity

If an image has k edge pixels, row and column edge sep-
aration has O(2k) = O(k) because every pixel is compared
to the next and below pixel. After that, if the edge images
have l lines and the average length (pixels) of lines is a,
the labeling processing takes O(la2), because in the worst
case, every pixel of a line has its own label so that it will
be compared to one another. However, PCA is an arithme-
tic calculation and it has O(1). Therefore, the sum of the
order is O(k) + O(la2) · O(1) = O(k) + O(la2), but roughly
k = la; so the time complexity is O(ka).
3. Determining the threshold for the small eigenvalue k2

A line should be long enough to validate its straightness
and angle. For that reason, we use lines at least 30 pixels
long to see how large their eigenvalues are. First of all, to
see the variation of the small eigenvalue k2 of straight line,
16 straight lines are used with the range from p/4 to p/2 as
shown in Fig. 4(a). The characteristics of straight lines
beyond that range would be the same as these 16 lines,
because of the symmetrical property of angle.

Table 1 shows the angles and small eigenvalues of the
lines in Fig. 4(a). The small eigenvalues of the lines were
less than 0.075; but we could not take that value as such
for the threshold of the straightness on account of noise
effects in edge and image. Thus, we made an experiment
with the lines in Fig. 4(b) that might be considered as
straight lines to some extent.

Table 2 shows PCA data of the lines in Fig. 4(b). Some
of them could be detected for straight line; for example,
4th–11th lines can be said that they have a little straight-
5 6 7 8

83 1.3249 1.2515 1.2091 1.1435
50 0.0695 0.0662 0.0703 0.0639

13 14 15 16

40 0.9035 0.8670 0.8317 0.7854
28 0.0481 0.0438 0.0401 0.0

5 6 7 8

19 1.5579 1.5329 1.5708 1.5708
98 0.0542 0.2259 0.0622 0.1156

13 14 15 16

08 1.4901 1.3536 �1.5388 1.5708
67 0.7148 0.4406 0.4404 0.2489

Table 3
Small and large eigenvalues of five row lines in Fig. 5

Type 1 2 3 4 5

Size (pixels) 30 60 90 120 150
Angle 0.0782 0.0848 0.0898 0.0928 0.0938
Small

eigenvalue
0.0735 0.0813 0.0817 0.0814 0.0820

Large
eigenvalue

75.3765 302.0854 680.3905 1210.3186 1891.5013

Fig. 5. Five lines of different size.

1748 Y.-S. Lee et al. / Pattern Recognition Letters 27 (2006) 1744–1754
ness properties. By this observation, we found that a value
between 0.25 and 0.3 would be proper for the absolute

threshold ta.
As a line is getting longer, there might be short noise

primitives destroying the straightness of the line. Therefore,
long lines should be compensated by adjusting the thresh-
old according to the length of the line. Although there is
a little error, Table 3 shows that the large eigenvalue is pro-
portional to the square of the length of line (refer to Fig. 5).
Since we had an absolute threshold, ta for at least 30-pixel-
long line, the threshold for the small eigenvalue relative to
the length, ti can be as follows:

ti ¼
l2

i

302
ta; ð9Þ

where li is the length of the ith line in row or column edge
image, and the length is simply measured by the number of
pixels of the line.

As was expected, the absolute threshold gives a small
number of straight lines but very reliable result, while the
relative threshold gives more lines with a little inaccuracy.
The next section has more details.
Fig. 6. Experimental results with a noise added synthetic image: (a) a synthet
algorithm and (d) the result of Guru et al. with the mask size of 7.
4. Experimental results

4.1. Synthetic image

We compared our algorithm to the algorithm by Guru
et al. with a synthetic image they had used (Fig. 6(a)).
Fig. 6 shows the experimental result of the synthetic image
with impulse noises (Fig. 6(b)). The algorithms differ in
that our algorithm focuses on the detection of the entire
line of the same label having straightness property, while
their algorithm focuses on the local straightness within
the size of mask. Thus, as seen in Fig. 6(d), four round cor-
ners of the rectangular on the left were missed, while our
algorithm detected them (see Fig. 6(c)); and besides, their
algorithm also detected straight parts of the circle, but ours
did not detect any part of the circle. One of the advantages
of our algorithm is that it eliminates most impulse noises,
especially when they attached to straight lines, because
such noisy parts may be labeled independent of the straight
lines.

4.2. Real images

We tested our algorithm with two aerial images and
three building images. Canny edge detector (Canny,
1986) was applied first, and then row and column edges
were extracted from the edge image as Fig. 7(a) and (d)
show. All the lines were labeled, and the PCA is performed
for each label in both row and column edge images. As seen
in Fig. 7(b), the Pentagon image Fig. 7 has a lot of lines
with noise, so that some straight lines were missed as the
result of the absolute threshold of 0.25 shows in
Fig. 7(e). On the other hand, more straight lines are shown
in Fig. 7, where the relative threshold proportional to the
square of the length is used. The result of the absolute
threshold gives short but fairly reliable lines, whereas the
relative threshold gives many long lines. Lines that were
likely to be the south of the Pentagon were not detected
due to the noise; on the contrary, the detected lines are
good in their positions and lengths.

In real image, we have to consider noise effect which
appears in object boundaries and makes the straight
boundaries curved. If we use only the absolute threshold,
ic image used by Guru et al., (b) noise added image, (c) the result of our

Fig. 7. (a) The pentagon image, (b) edge image, (c) row edges, (d) column edges, (e) straight lines using the absolute threshold and (f) straight lines using
the relative threshold.

Fig. 8. (a) The aerial image, (b) edge image, (c) row edges, (d) column edges, (e) straight lines using the absolute threshold and (f) straight lines using the
relative threshold.

Y.-S. Lee et al. / Pattern Recognition Letters 27 (2006) 1744–1754 1749

Fig. 9. (a) House image, (b) church image and (c) college image.

Fig. 10. The results of Fig. 9. Each row shows the result of house, church, and college respectively. Each column shows edge image, straight lines with the
absolute threshold, and straight lines with the relative threshold.

1750 Y.-S. Lee et al. / Pattern Recognition Letters 27 (2006) 1744–1754

Y.-S. Lee et al. / Pattern Recognition Letters 27 (2006) 1744–1754 1751
there will be small number of detected lines because of
noise. Besides, we found that the line is easily affected by
noise as it is getting longer, so that we proposed another
threshold that changes according to the length of a line
to reduce noise effect and detect more lines. In summary,
the application that needs exact straight line such as stereo
line matching should use the absolute threshold only, but if
the application that needs many straight lines such as
object recognition has to use proposed relative threshold.
Fig. 11. Orientation estimation using the large eigenvalue of straight line f
�50� < h 6 �30�, (d) �30� < h 6 �10�, (e) �10� < h 6 10�, (f) 10� < h 6 30�,
Aerial image Fig. 8(a) was also tested using the same
procedure as above. As Fig. 8(c) and (d) shows, the separa-
tion of row and column lines from the edge image Fig. 8(b)
is a simple and efficient preprocessing, because rectangular
edges of roofs are easily divided into the base frame lines.
We used the same threshold as used for the Pentagon
image. Fig. 8(e) and (f) shows the results of the absolute
and the relative threshold respectively. Fortunately, the
result of the absolute threshold gives many straight lines
or the pentagon image: (a) �90� 6 h 6 �70�, (b) �70� < h 6 �50�, (c)
(g) 30� < h 6 50�; (h) 50� < h 6 70� and (i) 70� < h 6 90�.

1752 Y.-S. Lee et al. / Pattern Recognition Letters 27 (2006) 1744–1754
regardless of noise effect, whereas the result of the relative
threshold has a few curve lines, but they are connected to
long straight lines.

Other three images (see Fig. 9) were also tested with the
same threshold, 0.25. Fig. 10(a)–(i) is the results of those
images. The advantage of the relative threshold is that it
defines the shapes of buildings more clearly as shown in
the results, whereas the absolute threshold missed some
Fig. 12. (a)–(c) show the example of parall

Fig. 13. The results of the standard HT: (a) the pentagon image, (b) the a
verges of buildings. The result of house image shows that
important straight lines are well extracted. However, as
shown in the edge image, local brightness ambiguities
between object and background and between some parts
of the image affected the edge localization, so that some
straight lines were not detected. In church image, some bars
of the front fence were missed because of the same reason of
the case of house image. One of the roof lines of college
el line extraction for the Aerial image.

erial image, (c) house image, (d) church image and (e) college image.

Table 4
Consuming time of our method and standard HT (s)

Image Pentagon Aerial House Church College

Ours Labeling 1.566 3.765 0.375 2.331 0.781
The rest 0.172 0.266 0.062 0.203 0.109
Total 1.738 4.031 0.437 2.534 0.890

HT Total 8.584 12.716 6.472 10.741 6.555

Y.-S. Lee et al. / Pattern Recognition Letters 27 (2006) 1744–1754 1753
image was also missed, and the windows of the college are
so small that they are very sensitive to the noise, which
means a line should be long enough to show its property.
Nevertheless, all the results show a good efficiency of our
algorithm, and show that the relative threshold is needed
to get more information for further processing.

Figs. 11 and 12 are examples of the orientation estima-
tion of straight lines. This work helps us do additional pro-
cessing such as vanishing point detection, parallel line
detection and line matching across views (Lutton et al.,
1994; Schmid and Zisserman, 1997). Fig. 13 shows the
results of HT with the same images we have used. However,
too many edges deteriorate the performance, which is disad-
vantage of HT. Of course, estimated angle of a line of our
result can be compared with that of HT, but our method
estimates exact angle of a line, while HT obtains the approx-
imate angle of a line from accumulator cells divided by pre-
defined angle and distance. Moreover, the lines of HT are
broken frequently. There are some reasons of this problem:
First, HT is very sensitive to edge image. If an image has
quite a lot of edges, the result of HT is very poor, and our
test images have so many edges. Second, because HT gives
line that is in the range of angle of an accumulator cell with
a tolerance, the value from HT result is not exact. Third,
HT chooses the peak value out of accumulator cells and
deletes it before the next peak detection, so that some part
of a line that is near the previous peak line may not be
drawn. Fourth, since HT has a grouping characteristic, it
often mistakes a group of edges for a line, i.e. when many
edges spread over the same distance and angle, HT takes
them as one line according to the accumulated votes.

We also present consuming time of our method and HT
for each image in Table 4. The environment was Pentium 4
2 GHz and the platform was Visual C++ for MS-Win-
dows. Obviously, large image takes more time like the Aer-
ial image, and most of time of our method elapses in the
edge labeling processing. We think that it is kind of
trade-off between time and accuracy; that is, because we
use labeling processing, we can get exact values of lines,
but unfortunately it takes much of time. On the other
hand, HT consumes long time because the quantization
interval and peak detection take plenty of time.

5. Discussions and conclusion

Our algorithm basically uses a simple segmentation that
separates row and column edges using primitive shape. In
some cases, however, our algorithm fails. For instance, if
two straight lines meet with the difference between two
angles small, they might have the same label, which makes
the small eigenvalue for the label larger.

Chain code (Sonka et al., 1999) algorithm can be an
alternative to the solution of the problem. If we use this
algorithm, corners and points that have a great curvature
should be detected. Besides, every end point and junction
point should be extracted. There can be three types of com-
position of line: end-end line, end-junction line and junc-
tion-junction line. However, it may take so much time
for processing. Moreover, the ambiguity about line seg-
ment and noise edge does hardly disappear.

The proposed algorithm is a simple and efficient. Espe-
cially, it is good for an edge image that has a lot of edges.
In addition, our algorithm avoids mask processing that
only uses local information. Solving the problem of two
or more merged straight lines as mentioned above will be
a future work for improving the performance of our
algorithm.

Acknowledgements

This work was supported by the Brain Korea 21 and
KIPA Information Technology Research Center. The Pen-
tagon image was obtained from Carnegie Mellon Image
Database and all the rest of the source images in experi-
ment section were obtained from Visual Geometry Group
at Oxford University.

References

Ben-Tzvi, D., Sandler, M.B., 1990. A combinatorial Hough transform.
Pattern Recognition Lett. 11 (3), 167–174.

Burns, J.B., Hanson, A.R., 1986. Extraction straight lines. IEEE Trans.
Pattern Anal. Mach. Intell. (4), 425–456.

Canny, J.F., 1986. A computational approach to edge detection. IEEE
Trans. Pattern Anal. Mach. Intell. 8 (6), 679–698.

Duda, R.O., Hart, P.E., 1972. Use of Hough transformation to detect
lines and curves in pictures. Commun. ACM 15 (1), 11–15.

Duda, R.O., Hart, P.E., Stork, D.G., 2001. Pattern Classification, Second
ed. Wiley Interscience (Chapter 3).

Guru, D.S., Shekar, B.H., Nagabhushan, P., 2004. A simple and robust
line detection algorithm based on small eigenvalue analysis. Pattern
Recognition Lett. 25, 1–13.

Hough, P.V.C., 1962. Method and means for recognizing complex
patterns, US Patent No. 3069654.

Illingworth, J., Kittler, J., 1987. The adaptive Hough transform. IEEE
Trans. Pattern Anal. Mach. Intell. 9 (5), 690–698.

Li, H., Lavin, M.A., Le Master, R.J., 1986. Fast Hough transform: A
hierarchical approach. Comput. Vision Graphics Image Process. 36,
139–161.

Lutton, E., Maitre, H., Lopez-Krahe, J., 1994. Contribution to the
determination of vanishing points using Hough transform. IEEE
Trans. Pattern Anal. Mach. Intell. 16 (4), 430–438.

Nagabhushan, P., Guru, D.S., Shekar, B.H., 2005. Eigen transformation
based edge detector for gray images, PReMI 2005. LNCS 3776, 434–
440.

Nevatia, R., Babu, K.R., 1980. Linear feature extraction and description.
Comput. Graphics Image Process. 13, 257–269.

Princen, J., Illingworth, J., Kittler, J., 1990. A hierarchical approach to
line extraction based on the Hough transform. Comput. Vision
Graphics Image Process. 52 (1), 57–77.

1754 Y.-S. Lee et al. / Pattern Recognition Letters 27 (2006) 1744–1754
Schmid, C., Zisserman, A., 1997. Automatic line matching across views.
Proc. IEEE Conf. Comput. Vision Pattern Recognition, 666–671.

Shekar, B.H., Guru, D.S., Nagabhushan, P., 2006. Object recognition
through the principal component analysis of spatial relationship
amongst lines ACCV 2006. LNCS 3851, 170–179.
Sonka, M., Hlavac, V., Boyle, R., 1999. Image Processing Analysis and
Machine Vision, Second ed. International Thomson Computer Press
(Chapter 6).

Venkateswar, V., Chellapa, R., 1992. Extraction of straight lines in aerial
images. IEEE Pattern Anal. Mach. Intell. 14, 1111–1114.

	A straight line detection using principal component analysis
	Introduction
	Terminology

	Proposed algorithm
	Edge separation and labeling
	Straight line detection using PCA
	Time complexity

	Determining the threshold for the small eigenvalue lambda 2
	Experimental results
	Synthetic image
	Real images

	Discussions and conclusion
	Acknowledgements
	References

